Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38578593

RESUMO

This work proposes the use of multi-criteria decision analysis (MCDA) to select a more environmentally friendly analytical procedure. TOPSIS, which stands for Technique for Order of Preference by Similarity to Ideal Solution, is an example of a MCDA method that may be used to rank or select best alternative based on various criteria. Thirteen analytical procedures were used in this study as TOPSIS input choices for mifepristone determination in water samples. The input data, which consisted of these choices, was described using assessment criteria based on 12 principles of green analytical chemistry (GAC). Based on the objective mean weighting (MW), the weights for each criterion were assigned equally. The most preferred analytical method according to the ranking was solid phase extraction with micellar electrokinetic chromatography (SPE-MEKC), while solid phase extraction combined with ultra-high performance liquid chromatography tandem mass spectrometry (SPE-UHPLC-MS/MS) was ranked last. TOPSIS ranking results were also compared to the green metrics NEMI, Eco-Scale, GAPI, AGREE, and AGREEprep that were used to assess the greenness of thirteen analytical methods for mifepristone determination. The results demonstrated that only the AGREE metric tool correlated with TOPSIS; however, there was no correlation with other metric tools. The analysis results suggest that TOPSIS is a very useful tool for ranking or selecting the analytical procedure in terms of its greenness and that it can be easily integrated with other green metrics tools for method greenness assessment.

2.
Biofouling ; : 1-17, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639133

RESUMO

Pathogenic bacteria in drinking-water pose a health risk to consumers, as they compromise the quality of portable water. Chemical disinfection of water containing dissolved organic matter (DOM) causes harmful disinfection by-products. In this work, 4-hydroxybenzoic acid (4-HBA) blended polyethersulfone membranes were fabricated and characterised using microscopic and spectroscopic techniques. The membranes were evaluated for the removal of bacteria and DOM from synthetic and environmental water. Permeate flux increased from 287.30 to 374.60 l m-2 h-1 at 3 bars when 4-HBA increased from 0 to 1.5 wt.%, suggesting that 4-HBA influenced the membrane's affinity for water. Furthermore, 4-HBA demonstrated antimicrobial properties by inhibiting bacterial growth. The membrane with 1 wt.% 4-HBA recorded 99.4 and 100% bacteria removal in synthetic and environmental water, respectively. Additionally, DOM removal of 55-73% was achieved. A flux recovery ratio (FRR) of 94.6% was obtained when a mixture of bacteria and humic acid was filtered, implying better fouling layer reversibility during cleaning. Furthermore, 100% FRR was achieved when a multimedia granular filtration step was installed prior to membrane filtration. The results illustrated that the membranes had a high permeate flux with low irreversible fouling. This indicated the potential of the membranes in treating complex feed streams using simple cleaning protocols.

3.
Materials (Basel) ; 17(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38473639

RESUMO

Acid mine drainage (AMD) is a major environmental problem caused by the release of acidic, toxic, and sulfate-rich water from mining sites. This study aimed to develop novel adsorbents for the removal of chromium (Cr(VI)), cadmium (Cd(II)), and lead (Pb(II)) from simulated and actual AMD using hybrid ion-exchange resins embedded with hydrous ferric oxide (HFO). Two types of resins were synthesized: anionic exchange resin (HAIX-HFO) for Cr(VI) removal and cationic exchange resin (HCIX-HFO) for Cd(II) and Pb(II) removal. The resins were characterized using scanning electron microscopy and Raman spectroscopy, which confirmed the presence of HFO particles. Batch adsorption experiments were conducted under acidic and sulfate-enhanced conditions to evaluate the adsorption capacity and kinetics of the resins. It was found that both resins exhibited high adsorption efficiencies and fast adsorption rates for their respective metal ions. To explore the potential adsorption on actual AMD, HCIX-HFO demonstrated significant removal of some metal ions. The saturated HCIX-HFO resin was regenerated using NaCl, and a high amount of the adsorbed Cd(II) and Pb(II) was recovered. This study demonstrates that HFO-embedded hybrid ion-exchange resins are promising adsorbents for treating AMD contaminated with heavy metals.

4.
Environ Sci Process Impacts ; 26(3): 595-610, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38323594

RESUMO

The presence of antimicrobials in water has grown into a major global health concern. This study thus focused on the presence, ecological implications, and potential health risks associated with nine antimicrobials: five antibiotics (ampicillin, chloramphenicol, ciprofloxacin, metronidazole, and tetracycline) and four parabens (methylparaben, ethylparaben, propylparaben, and butylparaben) in surface water and groundwater samples collected from three Southwestern States in Nigeria (Osun, Oyo, and Lagos States). These antimicrobials were widely detected across the three States with ciprofloxacin being the most dominant having maximum average concentrations of 189 µg L-1 and 319 µg L-1 in surface water and groundwater respectively. The range of average concentrations of antibiotics in surface water are 47.3-235 µg L-1 (Osun), 27.9-166 µg L-1 (Oyo) and 52.1-159 µg L-1 (Lagos). For groundwater, it is 35.3-180 µg L-1 (Osun), 26.5-181 µg L-1 (Oyo) and 32.3-319 µg L-1 (Lagos). The average concentrations of all parabens were 32.4-153 µg L-1, 53.4-80.1 µg L-1, and 83.2-132 µg L-1 for surface water and 46.7-55.7 µg L-1, 53-117 µg L-1, and 62.4-118 µg L-1 for groundwater in Osun, Oyo, and Lagos States respectively. Methylparaben was most frequently detected paraben with average concentrations of 153 µg L-1 and 117 µg L-1 in surface water and groundwater respectively. The measured environmental concentrations of these antimicrobials pose a significant ecological risk while those of ciprofloxacin and ampicillin pose a high health risk to all population groups studied. The average concentrations of antibiotics investigated in this study exceeded their threshold values for Predicted No-Effect Concentrations (PNEC) associated with resistance selection, except for tetracycline.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Parabenos/análise , Água , Nigéria , Medição de Risco , Antibacterianos/análise , Tetraciclina , Ciprofloxacina , Ampicilina , Poluentes Químicos da Água/análise , Monitoramento Ambiental
5.
Fitoterapia ; 172: 105754, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37992781

RESUMO

Canthium Lam. is a genus of flowering plants of the Rubiaceae family with about 80-102 species mainly distributed in Asia, tropical and subtropical Africa. The genus is closely related to Keetia E. Phillips and Psydrax Gaertn. and plants of this genus are used in folk medicine for the treatment of diarrhea, worms, leucorrhoea, constipation, snake bites, diabetes, hypertension, venereal diseases, and malaria. The present review covers a period of 52 years of biological and chemical investigations into the genus Canthium and has resulted in the isolation of about 96 secondary metabolites and several reported biological properties. For the Rubiaceae family, iridoids were reported as being the chemotaxonomic markers of this genus (∼25%). Other reported classes of compounds include alkaloids, flavonoids, phenolic compounds, cyanogenic glycosides, coumarins, sugar alcohols, lignans, triterpenoids, and benzoquinones. The main reported pharmacological properties of most species of this genus include antioxidant, antiplasmodial, antipyretic, anti-inflammatory, antidiabetic, neuroprotective and antimicrobial activities with the latter being the most prominent. Considering the diversity of compounds reported from plants of this genus and their wide range of biological activities, it is considered to be worthy to further investigate them for the discovery of potentially new and cost effective drugs.


Assuntos
Fitoterapia , Rubiaceae , Etnofarmacologia , Extratos Vegetais/química , Estrutura Molecular , Compostos Fitoquímicos
6.
Molecules ; 28(16)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37630383

RESUMO

In this study, functionalized mesoporous silica was prepared and characterized as a stationary phase using various analytical and solid-state techniques, including a Fourier-transform infrared (FTIR) spectrometer, thermogravimetric analysis, and nitrogen sorption. The results confirmed the successful synthesis of the hybrid stationary phase. The potential of the prepared hybrid mesoporous silica as a solid-phase extraction (SPE) stationary phase for separating and enriching polycyclic aromatic hydrocarbons (PAHs) in both spiked water samples and real water samples was evaluated. The analysis involved extracting the PAHs from the water samples using solid-phase extraction and analyzing the extracts using a two-dimensional gas chromatograph coupled to a time-of-flight mass spectrometer (GC × GC-TOFMS). The synthesized sorbent exhibited outstanding performance in extracting PAHs from both spiked water samples and real water samples. In the spiked water samples, the recoveries of the PAHs ranged from 79.87% to 95.67%, with relative standard deviations (RSDs) ranging from 1.85% to 8.83%. The limits of detection (LOD) for the PAHs were in the range of 0.03 µg/L to 0.04 µg/L, while the limits of quantification (LOQ) ranged from 0.05 µg/L to 3.14 µg/L. Furthermore, all the calibration curves showed linearity, with correlation coefficients (r) above 0.98. Additionally, the results from real water samples indicated that the levels of individual PAH detected ranged from 0.57 to 12.31 µg/L with a total of 44.67 µg/L. These findings demonstrate the effectiveness of the hybrid mesoporous silica as a promising stationary phase for solid-phase extraction and sensitive detection of PAHs in water samples.

7.
Environ Monit Assess ; 195(8): 926, 2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37420028

RESUMO

Freshwater resources play a pivotal role in sustaining life and meeting various domestic, agricultural, economic, and industrial demands. As such, there is a significant need to monitor the water quality of these resources. Water quality index (WQI) models have gradually gained popularity since their maiden introduction in the 1960s for evaluating and classifying the water quality of aquatic ecosystems. WQIs transform complex water quality data into a single dimensionless number to enable accessible communication of the water quality status of water resource ecosystems. To screen relevant articles, the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) method was employed to include or exclude articles. A total of 17 peer-reviewed articles were used in the final paper synthesis. Among the reviewed WQIs, only the Canadian Council for Ministers of the Environment (CCME) index, Irish water quality index (IEWQI) and Hahn index were used to assess both lotic and lentic ecosystems. Furthermore, the CCME index is the only exception from rigidity because it does not specify parameters to select. Except for the West-Java WQI and the IEWQI, none of the reviewed WQI performed sensitivity and uncertainty analysis to improve the acceptability and reliability of the WQI. It has been proven that all stages of WQI development have a level of uncertainty which can be determined using statistical and machine learning tools. Extreme gradient boosting (XGB) has been reported as an effective machine learning tool to deal with uncertainties during parameter selection, the establishment of parameter weights, and determining accurate classification schemes. Considering the IEWQI model architecture and its effectiveness in coastal and transitional waters, this review recommends that future research in lotic or lentic ecosystems focus on addressing the underlying uncertainty issues associated with the WQI model in addition to the use of machine learning techniques to improve the predictive accuracy and robustness and increase the domain of application.


Assuntos
Monitoramento Ambiental , Qualidade da Água , Monitoramento Ambiental/métodos , Ecossistema , Reprodutibilidade dos Testes , Canadá
8.
Chem Biol Interact ; 377: 110466, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37004951

RESUMO

The concept of drug delivery systems as a magic bullet for the delivery of bioactive compounds has emerged as a promising approach in the treatment of different diseases with significant advantages over the limitations of traditional methods. While nanocarrier-based drug delivery systems are the main advocates of drug uptake because they offer several advantages including reduced non-specific biodistribution, improved accumulation, and enhanced therapeutic efficiency; their safety and biocompatibility within cellular/tissue systems are therefore important for achieving the desired effect. The underlying power of "design-interplay chemistry" in modulating the properties and biocompatibility at the nanoscale level will direct the interaction with their immediate surrounding. Apart from improving the existing nanoparticle physicochemical properties, the balancing of the hosts' blood components interaction holds the prospect of conferring newer functions altogether. So far, this concept has been remarkable in achieving many fascinating feats in addressing many challenges in nanomedicine such as immune responses, inflammation, biospecific targeting and treatment, and so on. This review, therefore, provides a diverse account of the recent advances in the fabrication of biocompatible nano-drug delivery platforms for chemotherapeutic applications, as well as combination therapy, theragnostic, and other diseases that are of interest to scientists in the pharmaceutical industries. Thus, careful consideration of the "property of choice" would be an ideal way to realize specific functions from a set of delivery platforms. Looking ahead, there is an enormous prospect for nanoparticle properties in regulating biocompatibility.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas , Distribuição Tecidual , Sistemas de Liberação de Medicamentos/métodos , Nanomedicina/métodos , Nanopartículas/química , Preparações Farmacêuticas
9.
Environ Pollut ; 312: 119783, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35863703

RESUMO

The aquatic environment is a hotspot for the transfer of antibiotic resistance to humans and animals. Several reviews have put together research efforts on the presence and distribution of antibiotic resistant bacteria (ARB), antibiotic resistance genes (ARGs), and antibiotic chemical residue (ACRs) in food, hospital wastewater, and even in other aquatic environments. However, these reports are largely focused on data from developed countries, while data from developing countries and especially those in Africa, are only marginally discussed. This review is the first effort that distills information on the presence and distribution of ARGs and ACRs in the African aquatic environments (2012-2021). This review provides critical information on efforts put into the study of ARB, ARGs, and ACRs in aquatic environments in Africa through the lens of the different sub-regions in the continent. The picture provided is compared with those from some other continents in the world. It turns out that the large economies in Africa (South Africa, Nigeria, Tunisia, Kenya) all have a few reports of ARB and ARGs in their aquatic environment while smaller economies in the continent could barely provide reports of these in their aquatic environment (in most cases no report was found) even though they have some reports on resistomes from clinical studies. Interestingly, the frequency of these reports of ARB and ARGs in aquatic environments in Africa suggests that the continent is ahead of the South American continent but behind Europe and Asia in relation to providing information on these contaminants. Common ARGs found in African aquatic environment encode resistance to sulfonamide, tetracycline, ß-lactam, and macrolide classes of antibiotics. The efforts and studies from African scientists in eliminating ARB and ARGs from the aquatic environment in Africa are also highlighted. Overall, this document is a ready source of credible information for scientists, policy makers, governments, and regional bodies on ARB, ARGs, and ACRs in aquatic environments in Africa. Hopefully, the information provided in this review will inspire some necessary responses from all stakeholders in the water quality sector in Africa to put in more effort into providing more scientific evidence of the presence of ARB, ARGs, and ACRs in their aquatic environment and seek more efficient ways to handle them to curtail the spread of antibiotic resistance among the population in the continent. This will in turn, put the continent on the right path to meeting the United Nations Sustainable Development Goals #3 and #6, which at the moment, appears to be largely missed by most countries in the continent.


Assuntos
Genes Bacterianos , Águas Residuárias , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Animais , Antibacterianos , Bactérias/genética , Humanos , Macrolídeos , Nigéria , Sulfonamidas , Tetraciclinas , Águas Residuárias/análise , beta-Lactamas
10.
Biofouling ; 38(5): 441-454, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35686367

RESUMO

This work investigates the enhancement of antifouling properties of ceramic nanofiltration membranes by surface modification via atomic layer deposition (ALD) of TiO2. Feed solutions containing bovine serum albumin (BSA), humic acid (HA) and sodium alginate (SA) were used as model foulants. The classic fouling mechanism models and the modified fouling indices (MFI) were deduced from the flux decline profiles. Surface roughness values of the ALD coated and uncoated membranes were 63 and 71 nm, respectively, while the contact angles were 34.2 and 59.5°, respectively. Thus, coating increased the water affinity of the membrane surfaces and consequently improved the anti-fouling properties. The MFI values and the classic fouling mechanism correlation coefficients for cake filtration for the ALD coated and the uncoated membrane upon SA fouling were 42,963 (R2 = 0.82) and 143,365 sL-2 (R2 = 0.98), respectively, whereas the correlation coefficients for the combined foulants (SA + BSA + HA) were 267,185 (R2 = 0.99) and 9569 sL-2 (R2 = 0.37), respectively. The study showed that ALD can effectively enhance the antifouling properties of ceramic membranes.


Assuntos
Incrustação Biológica , Purificação da Água , Alginatos , Biofilmes , Incrustação Biológica/prevenção & controle , Cerâmica , Substâncias Húmicas/análise , Membranas Artificiais , Soroalbumina Bovina
11.
Environ Sci Pollut Res Int ; 29(55): 83452-83468, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35761140

RESUMO

Pyrolysis GC-ToF-MS-based analytical study was employed in the identification of microplastics (MPs) in the freshwater of a dam Rietvlei (RTV) located at Gauteng Province, South Africa. These MPs extracted in five locations of the dam were found to contain five different plastic polymeric constituents including PE, PS, PA, PVC and PET along with phthalate esters and fatty acid (amides and esters) derivatives as additives. Based on the fragmented pyrolyzate products, the contribution of plastic polymers and additives was 74% and 26% respectively. Among polymers, PA was dominant with 52% followed by PVC (16%) and others (13%) such as PE, PET and PS in MPs. Scanning electron micrographs of MPs in this aquatic body displayed the rough and fibrous typed patterns. The residual mass of 8-14% was left after the thermal degradation of MPs in RTV samples in the temperature range of 500-550 °C. The results of thermogravimetry (TGA) and energy-dispersive (EDS) analyses are mutually dependent and coherent to each other by way of demonstrating the presence of various inorganic compounds in the form of additives and/or sorbates. The lessened intensities of carbonyl stretching in PA (1625 cm-1) and PET (1725 cm-1) type of MPs attributed the occurrence of degradation and weathering in this aquatic system. The possible causes to the contamination of MPs in this freshwater are the located industries and poor waste management strategies being practised in this densely populated city. Based on the industry, waste management and population perspectives, the increased contamination of MPs is very likely in this freshwater which will drastically affect the ecosystem in the near future. Based on the characterisation results, the presence of various polymers, additives and the metals in MPs is envisaged to deteriorate the aquatic life along with successive risks for the people as a consequence of bio-magnification.


Assuntos
Microplásticos , Poluentes Químicos da Água , Humanos , Plásticos/análise , Pirólise , Cloreto de Polivinila , Ecossistema , África do Sul , Poluentes Químicos da Água/análise , Água Doce/análise , Cromatografia Gasosa-Espectrometria de Massas , Polímeros , Ésteres/análise , Monitoramento Ambiental/métodos
12.
Aquat Toxicol ; 247: 106176, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35487150

RESUMO

The application of nanocomposite materials fabricated from titanium dioxide nanoparticles (TiO2 NPs) and different carbon (C) allotropes have gained popularity in water treatment applications due to their synergistic properties. Studies to date have focused on simple forms of nanomaterials (NMs), however, with the technology development, there is a dramatic increase in production and application of these complex NMs which could result in toxicological impacts on organisms when released into aquatic environments. This raises serious concerns about their safety and the need to ascertain their potential adverse effects on aquatic organisms. While conjugated TiO2 NPs/carbon-based nanohybrids (TiO2/C-NHs) may exhibit enhanced photocatalytic activity, there is no research in the scientific community regarding their toxicological effects on D. magna, which are indicators of freshwater pollution. In this study, two under-represented TiO2/C-NHs (i.e., TiO2- conjugated carbon nanofiber (CNF), and TiO2-conjugated multi-walled carbon nanotube (CNT)) were investigated for their toxic effects on D. magna, through a series of acute toxicity tests with a set of sublethal biochemical biomarkers of oxidative stress. The lethal toxicity and oxidative stress formation of TiO2/C-NHs over 48 h revealed a concentration-dependant increase in D. magna mortality. The primary mechanism identified was the generation of ROS, which was in line with toxicity results. Light microscopy and CytoViva® images visualized D. magna interaction with the NPs, which accumulated and appeared as dark materials in the lines of the gut tract. The collective results indicate that TiO2/C-NHs have the potential to cause an effect on freshwater organisms when released into the environment. However, the relevance of TiO2/C-NHs effects needs further chronic toxicity studies since they show promise to be used in nano-bioremediation materials to treat wastewaters.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Animais , Organismos Aquáticos , Daphnia , Biomarcadores Ambientais , Água Doce , Nanopartículas/química , Nanopartículas/toxicidade , Titânio/química , Poluentes Químicos da Água/toxicidade
13.
J Environ Manage ; 311: 114822, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35255324

RESUMO

Energy and environmental challenges are global concerns that scientists are interested in alleviating. It is on this premise that we prepared boron/nitrogen graphene-coated Cu0/TiO2 (B/N-graphene-coated Cu/TiO2) photocatalyst of varying B:N ratios with dual functionality of H2 production and 2-Chlorophenol (2-CP) degradation. In-situ coating of Cu0 with B/N-graphene is achieved via solvothermal synthesis and calcination under an inert atmosphere. All B/N-graphene-coated Cu/TiO2 exhibit higher photonic efficiencies (5.68%-7.06% at 300 < λ < 400 nm) towards H2 production than bare TiO2 (0.25% at 300 < λ < 400 nm). Varying the B:N ratio in graphene influences the efficiency of H2 generation. A B:N ratio of 0.08 yields the most active composite exhibiting a photonic efficiency of 7.06% towards H2 evolution and a degradation rate of 4.07 × 10-2 min-1 towards 2-chlorophenol (2-CP). Density functional theory (DFT) investigations determine that B-doping (p-type) enhances graphene stability on Cu0 while N-doping (n-type) increases the reduction potential of Cu0 relative to H+ reduction potential. X-ray photoelectron spectroscopy reveals that increasing the B:N ratio increases p-type BC2O while decreasing n-type pyridinic-N in graphene thus altering the interlayer electron density. Isotopic labelling experiments determine water reduction as the main mechanism by which H2 is produced over B/N-graphene-coated Cu/TiO2. The reactive species involved in the degradation of 2-CP are holes (h+), hydroxyl radical (OH•), and O2•-, of which superoxide (O2•-) plays the major role. This work displays B/N -graphene-coated Cu/TiO2 as a potential photocatalyst for large-scale H2 production and 2-CP degradation.

14.
Water Environ Res ; 94(2): e10693, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35199396

RESUMO

This work presents the first comprehensive investigation of natural organic matter (NOM) fraction removal using ceramic membranes in South Africa. The rate of removal of bulk NOM (measured as UV254 and DOC % removal), the biodegradable dissolved organic carbon (BDOC) fraction, polarity-based fractions, and fluorescent dissolved organic carbon (FDOM) fractions was investigated from water abstracted from drinking water treatment plants (WTPs) in South Africa. Further, mechanisms of ceramic membrane fouling by waters of South Africa were studied. Ceramic membranes removed more than 80% DOC from samples from coastal WTPs, whereas for inland plants, the removal was between 60% and 75% of DOC. FDOM was removed to at least 80% regardless of the site of the plant. The BDOC removal by the ceramic membranes was above 85%. The hydrophobic fraction was the most amenable to removal by ceramic membranes regardless of the site of sample abstraction (above 60% for all sites). The freshness index (ß:α) correlated strongly to UV254 removal (R2 = 0.96), thus UV254 removal can serve as a proxy for the susceptibility to removal of such class of NOM by ceramic membranes. This investigation demonstrated that ceramic membranes could be a valuable technology if integrated into the existing WTPs. PRACTITIONER POINTS: The removal of bulk parameters by ceramic membrane was greater than unit conventional processes used in all the sampled water treatment plants. The hydrophobic polarity-based fraction of NOM was the most amenable to removal by ceramic membranes regardless of the site of the WTP. Polarity-based fractions, aromaticity, and initial DOC had a combined influence on the removal of organic matter by ceramic membranes as explained by principal component three.


Assuntos
Água Potável , Purificação da Água , Cerâmica , Filtração , Interações Hidrofóbicas e Hidrofílicas , Membranas Artificiais , África do Sul
15.
Sci Total Environ ; 814: 152448, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-34942254

RESUMO

Parabens are chemicals extensively used in pharmaceuticals, cosmetics, personal hygiene and food products as preservatives. They are classified as emerging contaminants with endocrine-disrupting capability. In this study, the concentrations of Methylparaben (MeP), Ethylparaben (EtP), Propylparaben (PrP) and Butylparaben (BuP) were obtained from groundwater, surface-water and packaged water samples collected from urban and rural areas of Osun State, Nigeria using HPLC-UV equipment. Data obtained were subjected to descriptive (Mean ± SD), inferential (Kruskal-Wallis test) and multivariate analyses. MeP had the highest average concentration of 163 and 68 µg L-1 in surface water and groundwater respectively while concentrations of MeP, EtP, PrP and BuP were higher than previously reported in other countries. Methylparaben had the highest detection frequencies (88.0 and 50.0%) followed by BuP (69.0 and 50.0%) in surface water and groundwater respectively. No significant difference was observed for concentrations of parabens in groundwater samples in urban and rural sampling sites, suggesting that people living around these sites are equally exposed to any health implications from the use of paraben-polluted potable water. Principal Component Analysis (PCA) data suggest that the pairs MeP & EtP, PrP & BuP (in surface water samples) and MeP, EtP, & PrP (in groundwater samples) are from similar pollution sources. Ecological risk assessment using Algae, Fish, and Daphnia suggests Daphnia as the most sensitive organism while BuP and PrP show the highest health risk. Human exposure assessment showed that higher overall median estimated daily intake (EDI) values for groundwater were observed in infants (1.71 µg kg-1 bw day-1, ∑PBs) compared to toddlers (1.03 µg kg-1 bw day-1, ∑PBs), children (0.64 µg kg-1 bw day-1, ∑PBs), teenagers (0.51 µg kg-1 bw day-1, ∑PBs) and adults (0.62 µg kg-1 bw day-1, ∑PBs). Although these values are below limits set in a few countries, potential bioaccumulation could lead to severe health consequences.


Assuntos
Cosméticos , Parabenos , Adolescente , Animais , Exposição Ambiental/análise , Humanos , Nigéria , Parabenos/análise , Conservantes Farmacêuticos , Água
16.
Chemosphere ; 291(Pt 2): 132891, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34800499

RESUMO

A wide range of semiconductor-assisted photocatalytic nanomaterials (NMs) are currently being considered and investigated as potential photocatalysts in water treatment. The applications of nanocomposites composed of nano-structured titania (nano-TiO2) and multi-walled carbon nanotubes (MWCNTs) nanocomposites is growing markedly on account of enhanced photocatalytic efficiency. However, concurrent with the increasing production and application comes a serious concern of these emerging nanosystems about their potential risks in aquatic systems, and thereby potentially threatening aquatic organisms via toxic mechanisms that are, at present, poorly understood. In the present study, the lethal toxic effect and oxidative stress induced by TiO2/MWCNT-CNF nanocomposite in freshwater Pseudokirchneriella subcapitata were assessed. The growth inhibition and sublethal oxidative stress produced by the nanocomposites were evaluated on green microalgae P. subcapitata after 3 days of exposure at 24 h intervals. Moreover, the nanocomposites were physicochemically characterized using a combination of analytical techniques (XRD, SEM/EDS, HRTEM, TGA, UV-Visible spectroscopy). Evaluation of the hybrid for the photocatalytic degradation of Acid Violet 7 dye indicated an enhanced dye removal performance for TiO2/MWCNT-CNF (96.2%) compared to TiO2 (75.2%) after 2 h of visible light irradiation. While the nanocomposite showed good potential for the degradation of the azo dye, overall, the findings herein indicated that acute exposure of P. subcapitata to various concentrations of TiO2/MWCNT-CNF nanocomposite may cause algal growth inhibition including undesirable sublethal oxidative stress effects. The findings of this study contribute to a better understanding of the potential hazards of the developing nanocomposites materials towards the nano-bioremediation materials to treat wastewaters.


Assuntos
Microalgas , Nanocompostos , Nanotubos de Carbono , Catálise , Água Doce , Nanocompostos/toxicidade , Nanotubos de Carbono/toxicidade , Titânio/toxicidade
17.
Heliyon ; 7(12): e08469, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34917790

RESUMO

This article describes the initial study on the simultaneous determination of multiclass antibiotic residues in imported and local frozen poultry specimens, including turkey gizzard and muscle tissues, and chicken muscle tissues, commonly consumed in Ogun State, Nigeria. Minced tissues were treated with phosphate buffer adjusted to pH 7 that was cleaned using C18 SPE-column (Supelclean™) cartridge. For the determination of six antibiotic residues including fluoroquinolones, sulfonamides, and macrolides, a solid-phase extraction method was used, followed by extract analysis using high-performance liquid chromatography-diode array detection (HPLC-DAD). The coefficient of determination (R2) for the external standards for all the analytes ranged between 0.963 and 0.999. The limit of detection (LOD) and quantification (LOQ) ranged between 5.37 - 55.4 µg/kg, and 17.9-185 µg/kg, respectively. Enrofloxacin, sulfadimethoxine, sulfamerazine, and tylosin showed high concentration levels in the frozen poultry beyond acceptable maximum residue limits (MRLs). The six drugs considered in this study were present at higher concentrations in domestic chicken tissues than the permissible level. This suggests that farmers do not observe the cessation period before poultry birds previously treated with antibiotics are sold to consumers thus exposing them to potentially hazardous antibiotic residues.

18.
Materials (Basel) ; 14(17)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34501183

RESUMO

The adoption of green technology is very important to protect the environment and thus there is a need for improving the existing methods for the fabrication of carbon materials. As such, this work proposes to discuss, interrogate, and propose viable hydrothermal, solvothermal, and other advanced carbon materials synthesis methods. The synthesis approaches for advanced carbon materials to be interrogated will include the synthesis of carbon dots, carbon nanotubes, nitrogen/titania-doped carbons, graphene quantum dots, and their nanocomposites with solid/polymeric/metal oxide supports. This will be performed with a particular focus on microwave-assisted solvothermal and hydrothermal synthesis due to their favourable properties such as rapidity, low cost, and being green/environmentally friendly. These methods are regarded as important for the current and future synthesis and modification of advanced carbon materials for application in energy, gas separation, sensing, and water treatment. Simultaneously, the work will take cognisance of methods reducing the fabrication costs and environmental impact while enhancing the properties as a direct result of the synthesis methods. As a direct result, the expectation is to impart a significant contribution to the scientific body of work regarding the improvement of the said fabrication methods.

19.
Sci Total Environ ; 796: 149065, 2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34328881

RESUMO

Evaporation ponds (EVPs) are among the most cost-effective, and simple wastewater treatment technologies used in many regions/countries with high solar radiation levels. However, its operational limitations, which include the overflow of wastewater, leakages via liners, and large surface area of the EVP that is exposed to atmosphere, creates a negative feedback to the environment. Therefore, the main aim of this review study of more than a hundred works published a little all over the continents is to provide a summary of various contaminations that are associated with EVPs activities through different environmental compartments. In addition, the impacts of EVP on fauna, human health including the current on-site sustainable mitigation strategies were also reviewed. The first conclusion from this study shows that the most commonly contaminants released into surface waters, groundwater, soil and sediments were heavy metals, pesticides, herbicides, selenium, including several major anions and cations. Non-methane hydrocarbons (NMHCs), volatile organic compounds (VOCs), and particulate matters (PMs) were the main air pollutants emitted from the surfaces of an EVP. Limited data is available about the emissions of atmospheric greenhouse gas (GHGs) especially carbon dioxide (CO2) and methane (CH4) from EVP surfaces. Migratory birds and aquatic organisms are the most vulnerable fauna as EVP wastewaters can cause obstruction of movements, affect diversity, and causes mortalities following the exposure to the toxic wastewater. The study revealed limited data about the potential health risk associated with occupational and environmental exposure to radiological hazards and contaminated drinking water from EVP activities. On-site EVP treatment strategies using bioremediation and electrochemical treatment technologies have shown to be a promising sustainable mitigation approach. Knowledge gaps in areas of GHGs monitoring/modeling, pollution exposure estimation and health risk assessments are urgently required to gain deeper understanding about the impact of EVP activities, and incorporate them into future EVP designs.


Assuntos
Poluentes Atmosféricos , Metais Pesados , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Humanos , Material Particulado/análise , Lagoas , Saúde Pública
20.
Ecotoxicol Environ Saf ; 222: 112478, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34214769

RESUMO

Wastewater treatment plants (WWTPs) in South Africa, like is the case for most WWTPs around the globe albeit capable of removing substantial quantities of microplastics (MPs) and in fact, the treatments become ineffective for those plastic particles less than 100 µm. As a consequence, the receiving water bodies in which the final effluent is discharged becomes highly polluted. The present research is devoted to the analysis of the pervasive MPs in wastewaters of the treatment plant located in the Gauteng Province, South Africa using Pyrolysis - GC-TOF-MS. Based on the results, there were 23 pyrolyzate products with contributions from PVC, PA, PET and PE with abundances of 47.8%, 13.1%, 17.4% and 4.3% respectively. The remaining 17.4% could be attributed as additives in MPs. The SEM images illustrated that the MPs appeared to be inter - wined, fibrous of different thicknesses and lengths. The highly weathered MPs exhibited the rough surface which was noticeably damaged with peeled off layers presumably because of photo-oxidation during the aging process. The vibrational modes of FTIR revealed the presence of the various functional groups in the corresponding polymers of MPs. The thermal studies confirmed the presence of calcium, aluminum and silicon as residues of catalysts or flame retardants or UV stabilizers in MPs or as adsorbates resulting from the surface adsorption from the surroundings. The Py-GC-TOF-MS confirmed the identity of the various fragments related to the MPs monomers.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Microplásticos , Plásticos , África do Sul , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...